友快網

導航選單

「國際教育」A-level數學知識點總結:三角函式——特徵

Graphs of sec x, cosec x, cot x

You will also need to know the graphs and properties of the reciprocal functions 你還需要知道倒數函式的圖形和屬性:

The following properties apply to any reciprocal function 以下屬性適用於任何倒數函式 :

The reciprocal of zero is +∞ 零的倒數是+∞

The reciprocal of +∞ is zero +∞的倒數是零

The reciprocal of 1 is 1 1的倒數是1

The reciprocal of -1 is -1 -1的倒數是-1

Where the function has a maximum value, its reciprocal has a minimum value 當函式有一個最大值時,其倒數有一個最小值。

If a function increases, the reciprocal decreases 如果一個函式增加,其倒數就會減少

A function and its reciprocal have the same sign 一個函式和它的倒數有相同的符號

The curves of cosec x, sec x and cot x are shown below 下面是餘弦x、sec x和cot x的曲線 :

From a right angled triangle we know that 從直角三角形我們知道 :

cos²θ + sin²θ = 1

It can also be shown that 也可以證明:

1 + tan²θ = sec²θ and cot²θ + 1 = cosec²θ

(Try dividing the second expression by cos²θ to get the first rearrangement, and separately divide cos²θ + sin²θ = 1, by sin²θ to get the other formula。)

(試著用第二個表示式除以cos²θ來得到第一個重排,並分別用cos²θ+sin²θ=1,除以sin²θ來得到另一個公式)

These are

Trigonometric Identities

and useful for rewriting equations so that they can be solved, integrated, simplified etc。

這些都是三角函式特徵,對重寫方程很有用,這樣就可以求解、積分、簡化等。

Formulae for sin (A + B), cos (A + B), tan (A + B)

Trigonometric functions of angles like A + B and A − B can be expressed in terms of the trigonometric functions of A and B。

角度的三角函式如A + B和A - B可以用A和B的三角函式來表示。

These are called

compound angle identities 這些被稱為複合角的特性:

sin (A + B) = sin A cos B + cos A sin B

sin (A - B) = sin A cos B - cos A sin B

cos (A + B) = cos A cos B - sin A sin B

cos (A - B) = cos A cos B + sin A sin B

Remember:

take care with the signs when using these formulae.

記住:在使用這些公式時要注意符號。

Double angle formulae 雙角公式

The compound angle formulae can also be used with two equal angles i。e。 A = B。

復角公式也可用於兩個相等的角,即A=B

If we replace B with A in the compound angle formulae for (A + B), we have 如果我們在(A+B)的復角公式中用A代替B,我們就可以得到:

sin 2A = 2(sin A cos A)

cos 2A = cos²A - sin²A

Also,

cos 2A = cos²A - sin²A = 1 - 2sin²A = 2cos²A - 1

The use for this final rearrangement is when integrating cos²x or sin²x.

最後重排的用途是在積分cos2x或sin2x時。

We use cos²x = ½cos 2x + ½ and sin²x = ½ - ½ cos 2x which we can integrate。

Half angle formulae 半形公式

Using this double angle formula for tan 2A and the two identities 用這個雙角公式計算tan 2A和兩個同位素:

We can replace 2A with x and use T for tan(x/2)。

我們可以用x代替2A,用T表示tan(x/2)。

This gives us the following identities, which allow all the trigonometric functions of any angle to be expressed in terms of T。

這就給我們提供了以下的相同點,這使得任何角度的所有三角函式都可以用T來表示。

Factor formulae 因子公式

The formulae we have met so far involve manipulating single expressions of sin x and cos x。 If we wish to

add sin or cos expressions together

we need to use the

factor formulae

, which are derived from the compound angle rules we met earlier。

如果我們想把正弦或餘弦的表示式加在一起,就需要使用因數公式,這些因數公式是由我們之前遇到的復角規則衍生出來的。

The compound angle formulae can be combined to give 複合角公式可以組合起來,得到 :

2sin A cos B = sin (A + B) + sin (A − B)

2cos A sin B = sin (A + B) - sin (A − B)

2cos A cos B = cos (A + B) + cos (A − B)

−2sin A sin B = cos (A + B) - cos (A − B)

If we simplify the right hand side of each of these equations by substituting

如果我們將這些方程的右邊簡化,代之以

A + B = J and A − B = K, we create the

factor formulae

The “Rcos” function “Rcos ”函式

The factor formulae allow us to add and subtract expressions that are all sines or all cosines。 If we wish to add a sine and a cosine expression together we have to use a different method。

因子公式允許我們對全部為正弦或全部為餘弦的表示式進行加減。如果我們想把一個正弦和一個餘弦表示式加在一起,就必須使用不同的方法。

This method is based upon the fact that combining a sine and a cosine will generate another

cos curve

with a

greater amplitude

and which is a number of degrees

out of phase

with the graph of cos θ。

這種方法是基於這樣一個事實,即結合正弦和餘弦將產生另一條振幅更大的餘弦曲線,並且與餘弦θ的圖形相位相差若干度。

This means that it can be written as R cos(θ - α), where R represents the amplitude and α represents the number of degrees the graph is out of phase (to the right)。

這意味著它可以寫成R cos(θ-α),其中R代表振幅,α代表圖形偏離相位的度數(向右)。

The solution is based upon the expansion of cos(θ - α)。

解決方案是基於cos(θ-α)的擴充套件。

Example:

Write 5 sin x + 12 cos x in the form R cos (θ - α)

R cos (θ - α) = R (cos θ cos α + sin θ sin α)

By matching this expansion to the question we get 透過將這種擴充套件與問題相匹配,我們可以得到 :

R cos θ cos α = 12 cos θ

and

R sin θ sin α = 5 sin θ

This gives:

R cos α = 12

and

R sin α = 5

By illustrating this with a right-angled triangle, we get, 用一個直角三角形來說明這一點,我們可以得到

Therefore

: α = 22。6

°

Therefore

: 5 sin θ + 12 cos θ = 13 cos(θ - 22。6)

It has a maximum value of 13 and is 22。6

°

out of phase with the graph of cos θ。

它的最大值為13,與cos θ的圖形相差22。6

°

Note

: This procedure would work with Rsin(θ + α)。 這個過程對Rsin(θ+α)也適用

Check to see if you can get a similar answer - it should be 13 sin (θ + 67。4)

檢查一下你是否能得到一個類似的答案——應該是13 sin (θ + 67。4)

上一篇:地暖,室溫30℃,別沾沾自喜!這7個問題可能即將出現
下一篇:告別行程卡後,建議:給家裡添置這10種“防護好物”,別再大意了